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ABSTRACT

At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources.
Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan & Goodman
and Goodman & Narayan showed that for an incomplete average, scattering introduces refractive substructure in
the image of a point source that is both persistent and wideband. We show that this substructure is quenched but
not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the
unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive
efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from
simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the
highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon
Telescope.
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1. INTRODUCTION

Radio-wave scattering in the turbulent interstellar medium
(ISM) produces familiar effects: scintillation in frequency,
time, and position. This scintillation has two distinct branches:
diffractive and refractive. Diffractive scintillation is narrow-
band, short-lived, and is quenched by a source exceeding the
diffractive scale, corresponding to the resolution of the
scattering disk when viewed as a lens. As a result, diffractive
scintillation is only observed for pulsars, masers, and a few
extremely compact quasars. In contrast, refractive scintillation
is wideband, persistent, but is quenched only when the angular
size of the source exceeds that of the scattering disk. Reviews
by Rickett (1990) and Narayan (1992) outline scattering theory
and observations in both of these regimes.

Narayan & Goodman (1989, hereafter NG89) and (Good-
man & Narayan 1989, hereafter GN89) uncovered a surprising
refractive effect: substructure in the scattered image of a point
source. Specifically, they showed that this substructure
contributes noise to interferometric visibilities on baselines
long enough to resolve the smooth, ensemble-average scattered
image. This noise is wideband and persists over the refractive
timescale (i.e., the time for the scattering material to move
across the scattered image). Gwinn et al. (2014) recently
provided a dramatic demonstration of this effect through the
discovery of substructure in the heavily scattered image of the
Galactic center supermassive black hole, Sgr A*, at 1.3 cm
wavelength.

We now extend the theoretical framework that describes
refractive substructure to accommodate short interferometric
baselines, anisotropic scattering, and extended source structure.
We show that, surprisingly, substructure in the scattered image
can occur at much finer angular scales than those of the
unscattered source. Thus, although an extended source
smoothes the diffraction pattern in the observing plane
according to the familiar convolution action of scattering, it
does not smooth the scattered image but merely reduces the
depth of fluctuations. As a result, refractive substructure can
remain an important consideration for observations in which

the scattering is somewhat subdominant to intrinsic structure,
and it can introduce spurious compact features into resolved
images of extended sources.
We begin, in Section 2 by reviewing some basic principles

of scattering and scintillation. Next, in Section 3, we explore
interferometric visibilities in different averaging regimes. In
Section 4, we define the scattered image and consider how its
appearance is affected by properties of the source and the
scattering. We also derive expressions that allow for efficient
numerical computation of scattered images and provide
characteristic results from simulations. In Section 5, we derive
specific observable properties of the refractive noise—flux
modulation, image wander, and substructure in scattered
images—using the second moment of the interferometric
visibility modulus (derived in Appendix B). In Section 6, we
consider implications of refractive noise for two specific
missions: RadioAstron and the Event Horizon Telescope
(EHT). We summarize our findings in Section 7.

2. THEORETICAL BACKGROUND

2.1. Interstellar Scattering and Scintillation

Scattering of radio waves in the interstellar plasma arises
from small-scale fluctuations in electron density. The resulting
variations in refractive index produce variations in phase of the
electromagnetic wave. As a result, each scattered ray has both
geometrical and stochastic contributions to phase.
In many cases, the scattering can be well-approximated by a

single thin phase-changing screen. The change in phase by the
screen is x( )ϕ , where x is a transverse coordinate on the screen.
The statistical characteristics of the scattering and scintillation
can then be related to statistical characteristics of the phase
fluctuations, either through a spatial structure function

x x x xD ( ) [ ( ) ( )]0 0
2ϕ ϕ≡ 〈 + − 〉ϕ or, equivalently, through the

power spectrum qQ ( ) of phase fluctuations.
A variety of evidence (e.g., Armstrong et al. 1995) suggests

that these functions are well approximated as power laws—
x xD ( ) ∝ ∣ ∣ϕ

α and q qQ ( ) ( 2)∝ ∣ ∣ α− + —spanning the immense
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range of scales from 102∼ km to 1> AU.3 On shorter scales, the
phase fluctuations are smooth, so x xD ( ) 2∝ ∣ ∣ϕ , while on
longer scales, Dϕ is constant (Tatarskii 1971).

The density fluctuations, and their power-law form, may
reflect the effects of a cascade of Alfvén-wave turbulence
(Goldreich & Sridhar 1995; Lithwick & Goldreich 2001).
Indeed, scattering often follows the Kolmogorov scaling
expected for this and other types of turbulence, with power-
law index α = 5/3. In this picture, the cascade is initiated by
driving forces at large spatial scales, the “outer scale” rout, and
is terminated by dissipation at a minimum scale, the “inner
scale” rin. Some evidence suggests that the inner scale for
interstellar scattering material is 100–300 km (Spangler &
Gwinn 1990; Rickett et al. 2009), although only a few, highly-
scattered lines of sight have been studied. The inner scale and
turbulence properties may differ for paths along and perpendi-
cular to the large-scale magnetic field. We provide simple
expression for xD ( )ϕ and qQ ( ) that accommodate anisotropy
and inner and outer scales in Appendices A and B.

If the power-law index 2α < then the spectra is said to be
“shallow,” whereas for 2α > the spectra is said to be “steep.”
In this paper, we restrict our attention to shallow spectra.

2.2. Scintillation and Averaging Regimes

In the strong scattering regime, there are three important
length scales on the scattering screen. The phase coherence
length, r0, corresponds to the separation between two points for
which the rms screen phase difference is 1 radian: D r( ) 10 ≡ϕ .
The Fresnel scale, rF, defines the lateral scale at which the
change in geometrical phase relative to that of the direct path is
1/2 radian and is given explicitly in Equation (2) below.
Finally, the refractive scale, rR, determines the size of the
scattered image of a point source: r r rR F

2
0≡ . The strong

scattering regime is defined by the condition r r r0 F R≪ ≪ .
These length scales delineate the two scintillation regimes,

diffractive and refractive, introduced in Section 1. Diffractive
scintillation is dominated by fluctuations on the scale of r0
whereas refractive scintillation is dominated by fluctuations on
the scale of rR. Thus, diffractive scintillation decorrelates over a
fractional bandwidth of r r0 R∼ while refractive scintillation
decorrelates over a fractional bandwidth of unity. Likewise, if
v⊥ denotes the characteristic transverse velocity of the
scattering material, then r v0 ⊥ gives the diffractive timescale
while r vR ⊥ gives the refractive timescale.

Following the treatment and nomenclature of GN89, we will
consider three types of averages for quantities such as
interferometric visibilities (denoted Vx) and images (denoted
Ix). A snapshot quantity (e.g., Vss) averages over source and
background noise for a single realization of the scintillation
pattern. An average quantity (e.g., Va) averages also over
diffractive scintillation but not refractive scintillation. An
ensemble-average quantity (e.g., Vea) averages over both
diffractive and refractive scintillation. We will also use these
subscripts to denote respective averages (e.g., ss〈…〉 represents
a snapshot average).

2.3. The Scalar Electric Field

To derive observable consequences of scattering, we must
first determine the scalar electric field b( )ψ at a transverse
coordinate b in the observing plane. Using the Fresnel
diffraction integral, this field can be written as (see, for
instance, Gwinn et al. 1998)

( )
( )

b x

s s

πr
d

e

d e

( )
1

2

( ). (1)

b x x

x s

i k
D

i k
R

F
2 screen

2

2
( )

src

2 2 src

2

2

∫

∫

ψ

ψ

=

×

×

ϕ∣ − +

∣ −

⎡
⎣⎢

⎤
⎦⎥

In this expression, a large, constant phase is absorbed into the
stochastic source field s( )srcψ , and we have chosen the
amplitude to simplify later calculations. Here, x( )ϕ is the
screen phase, D is the characteristic earth-scatterer distance, R
is the characteristic source-scatterer distance, k π2 λ= is the
wavenumber, and rF is the Fresnel scale, defined by4

r
DR

D R k

1
. (2)F ≡

+

We will write most subsequent equations in terms of rF and the
effective magnification M D R≡ of the scattering screen.

3. INTERFEROMETRIC VISIBILITIES IN DIFFERENT
AVERAGING REGIMES

We now consider the behavior of interferometric visibility
(i.e., the electric field covariance) in the various averaging
regimes outlined in Section 2.2.

3.1. The Snapshot Visibility

The simplest averaging regime is the snapshot—an average
over noise of the source for a fixed realization of the scattering.
We assume that the source is spatially incoherent with an
intensity sI ( )src : ( )s s s s sI( ) ( ) ( )src src

*
ss srcψ ψ δ〈 ′ 〉 ≡ − ′ . Then, the

snapshot visibility on a vector baseline b centered on b0 is (see
Figure 1)
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3 Note that α is used inconsistently throughout the literature, with some
authors choosing α as the index for qQ ( ) so that x xD ( ) 2∝ ∣ ∣ϕ

α− .
4 Note that some authors define the Fresnel scale differently, often with the
substitution k π k2→ .
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In the final expression, we have applied the Van Cittert–
Zernike Theorem (e.g., Thompson et al. 2001) to replace the
remaining source integral (a Fourier transform of the source
brightness distribution) with its equivalent form as an
interferometric visibility Vsrc corresponding to the unscattered
source image:

( ) ( )b s sV d I e( ) ( ) . (4)
s bπi

D Rsrc
2

src
2 ·∫∝ λ+

Because our later results are all expressed as fractional
quantities, overall normalization is insignificant. To simplify
calculations, we will adopt the normalization V 0( ) 1src = .

Note that the intensity of the diffraction (or illumination)
pattern in the observing plane takes the form

( ) ( ) ( )

( )
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The term in braces is simply the point source diffraction pattern
at a transverse coordinate b sM0 + . So, for an extended source,
we recover the well-known result that the diffraction pattern in
the observing plane is the convolution of the point-source
diffraction pattern with a magnified image of the source
(Salpeter 1967; Cohen et al. 1967). Hence, an extended source
will smooth out any features in the diffraction pattern that are
finer than the scales of the magnified source image. However,

in Section 4 we will demonstrate that an extended source does
not smooth the scattered image.

3.2. The Average Visibility

The snapshot visibility, corresponding to Equation (3),
represents the cumulative effect of three contributions: the
ensemble-average visibility, diffractive noise, and refractive
noise. As shown by GN89 and illustrated in Figure 2, the
diffractive contribution to the integral comes from regions with
x x r1 2 0− ≫ (see Appendix B); the ensemble average and
refractive noise arise from the region with x x r1 2 0− ≲ . Indeed,
this conclusion is apparent because an extended source limits
the contribution from widely-separated pairs of points and
thereby quenches the diffractive scintillation (Gwinn
et al. 1998). Thus, a extended source with size that is
significantly larger than the diffractive scale will immediately
take snapshot visibilities into the regime of the average
visibilities. When the angular size of the source exceeds the
refractive scale (i.e., when the scattering becomes subdominant
to source structure), the source will impose an even tighter
restriction x x M r r(1 )1 2

1
img 0− ≲ + ⩽− that reflects the

shorter correlation length of the source electric field at the
screen. We define rimg more precisely in Section 5.
A coarse examination of Equation (3) reveals most salient

properties of the noise in average visibilities. For instance,we can
readily understand why average visibilities are quite insensitive
to integration in frequency or time—it is a consequence of the
restriction x x M r r(1 )1 2

1
img 0− ≲ + ⩽− . For example, any sig-

nificant effect from a shift of the baseline center b0Δ requires

Figure 1. Geometry relating the source, scattering, and observer. The scales rsrc and rimg correspond to the coherence lengths in the observing plane of the electric field
from the source and ensemble-average scattered images, respectively. These scales are related to the angular sizes of these images via r 0.37src srcλ θ∼ and
r 0.37img imgλ θ∼ , with r rsrc img⩾ . Also, r0 denotes the transverse scale on the scattering screen over which the rms phase difference is one radian; the scattered angular
size of a point source is [ ]M r0.37 (1 )scatt 0θ λ∼ + .

Figure 2. Refractive and diffractive contributions to the snapshot visibility
(Equation (3)), as discussed in Section 3.2.
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bM r b M r(1 ) (1 ) 11
F

2
0

2 2
img
2+ Δ + + ≳− − − . Thus, short

baselines must be displaced by M r r(1 )2
F
2

img∼ + , which is
the appropriately magnified size of the scattered image. Long
baselines must be displaced by an amount that is smaller by

M r b(1 ) 1
img∼ + − . Because baselines with b r0≫ resolve the

ensemble-average scattering disk and, therefore, see little flux,
the former is the more typical circumstance. Thus, to influence
accessible refractive metrics, baseline centers must be displaced
by the refractive scale. An extended source increases the spatial
correlation scale, reinforcing the notion of a smooth diffractive
pattern in the observing plane, the convolution of the source
intensity distribution with the point-source response, as
discussed in Section 3.1.

We can likewise consider the effects of averaging in
frequency. To incorporate frequency dependence, there
are two necessary modifications: rF λ∝ and x( )ϕ λ∝ .
The additional phase from a wavelength change λΔ is then
given by { ( ) b x xr x x r M(1 ) · ( )1

2 F
2

1
2

2
2 1

2 F
2 1

1 2− + + + +λ
λ

Δ − − −

( }x x( ) ( )1 2ϕ ϕ−⎡⎣ ⎤⎦ . In the refractive regime, x1∣ − x r2 0∣ ≲ , so

x x( ) ( ) 11 2ϕ ϕ− ≲ . Hence, the phase of the first term is ∼ λ
λ

Δ , the

second is b

rimg
∼ λ

λ
Δ , and the third is ∼ λ

λ
Δ . Thus, the fractional

bandwidth of refractive noise is of order unity, except on long
baselines where it becomes r bimg∼ . Note that an extended
source will decrease the fractional bandwidth of refractive
noise on long baselines but will not change the fractional
bandwidth of refractive noise on short baselines.

However, while the baseline center b0 must shift by the
refractive scale to incur a significant change in the average
visibility, the vector baseline b only needs to change by a
distance of rimg∼ . Thus, an extended source will decrease the
coherence length of the refractive noise in the visibility domain.
This property already suggests the presence of intense
substructure in the scattered image, which we explore in
Section 4.

Because the current paper emphasizes refractive effects, we
will simply set:

b 0 (6)0 ≡

and ignore frequency dependence for the remainder.

3.3. The Ensemble-average Visibility

To obtain the ensemble-average visibility, we must average
over many realizations of the scattering screen, defined by the
Gaussian random field x( )ϕ . To calculate this average, the
characteristic function of a zero-mean Gaussian random
variable provides a convenient identity: e x xi ( ) ( )

ea
1 2 =ϕ ϕ−⎡⎣ ⎤⎦

e ex x x xD( ) ( ) ( )
1
2 1 2

2

ea
1
2 1 2=ϕ ϕ− − − −ϕ

⎡⎣ ⎤⎦ . We can then change the
integration variables to y x x1 2≡ − and x x x( ) 21 2≡ + to give

b y x

y

V
π r

d d e e

V M
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1

4

( (1 ) ). (7)

y b x yir
M D

ea 2
F
4

2 2 (1 )
· 1

2
( )
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F
2∫=

× − +

+ + − ϕ
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⎤
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Integration over x is then trivial, using the identity
x yd e π(2 ) ( )y xi2 · 2 2∫ δ= . Thus, because y yD D( ) ( )= −ϕ ϕ ,

( )b bV e V( ) ( ). (8)
bD
Mea

1
2 1 src= − +ϕ

Hence, we recover the well-known result that the ensemble-
average visibility for a scattered source is the product of the
point source visibility and the unscattered source visibility. A
familiar corollary is that, in the ensemble-average regime,
scattering convolves the unscattered source image with a
smooth scattering kernel.
Indeed, because the ensemble-average scattering is determi-

nistic and has a positive kernel, ( )e D b
M

1
2 1− ϕ + , it is readily inverted

when known (Fish et al. 2014). Hence, in the ensemble-
average regime, one can reconstruct the unscattered image of
the source by dividing measured visibilities by the scattering
kernel. With this approach, the residual effects of scattering are
simply to amplify the thermal noise on long baselines.
Moreover, the convolution action of scattering leads to other

convenient properties in this regime, as discussed by Fish et al.
(2014) and Johnson et al. (2014). For instance, because the
kernel is real and positive, visibility phases are unaffected by
scattering in the ensemble-average regime, even if the
scattering kernel is not known. Also, quotients of visibilities
on equal baselines will be unaffected, such as fractional
polarization in the visibility domain (because the scattering is
not significantly birefringent).

4. THE SCATTERED IMAGE

4.1. Definition of the Scattered Image

We now consider the appearance of the scattered image.
However, there are two immediate difficulties in precisely
defining the scattered image. The first is that it may depend so
sensitively on observing position that any aperture sufficient to
resolve the image will necessarily span different image
elements. The second is that the scattered image is not
incoherent, and so is not trivially related to visibilities via the
Van Cittert–Zernike theorem.
The first of these concerns is problematic for snapshot

visibilities. However, we have seen that average visibilities are
insensitive to changes of observing position (i.e., baseline
center b0) that are less than the refractive scale. Thus, the
average image is well-defined in this regard. For the second
concern, because the coherence length on the scattering screen
is r r0 R∼ ≪ , the scattered image can be considered effectively
incoherent for all baselines of length b D r r0 Rλ∣ ∣ ≪ ∼ .
Hence, we can define the average image according to the

Van Cittert–Zernike theorem applied to average visibilities:

( ) ( )x b b

b b

I d V e

d V e

( ) ( )

( ) . (9)

b x

b x

πi
D

i
r M

avg
2

avg
2 ·

2
avg

1
·

F
2

∫
∫

∝

=

λ−

− +

Note that we have calculated the image at a distance of the
scattering screen, D, rather than at a distance of the source. This
convention was also adopted by NG89, and allows linear
coordinates to be easily compared on the screen. Note also that
we ignore the dependence of the snapshot visibility on b0, in
accord with the discussion of Section 3.2 (a shift in b0 is
equivalent to a shift of the scattered image). Although this
image is rather different from that produced by a physically
realizable interferometer or aperture, it can be filtered or
averaged to reproduce their behavior flexibly and easily.

4

The Astrophysical Journal, 805:180 (15pp), 2015 June 1 Johnson & Gwinn



Observe that the integrand of Equation (9) is conjugated
when b b→ − , so xI ( )avg ∈ , although the image is not
necessarily positive.

4.2. The Scattered Image of an Extended Source

We now derive an expression for the scattered image of an
extended source in the average-image regime. Here, we require
only that the source quenches the diffractive scintillation so that
the snapshot- and average-image visibilities are equal (see
Section 3). The preceding definition for the scattered image is
especially useful in this case because the snapshot visibility has a
straightforward dependence on baseline. After substituting

bV ( )ss (given by Equation (3)) for bV ( )avg in Equation (9), the
integral over b gives a delta function with argument proportional
to x x x( ) 21 2− + . Thus, the only contribution to the snapshot
image at a location x is from pairs of points on the screen that are
centered on x. As in Section 3.3, we can change to variables
given by the average and difference of x1 and x2. Integrating
over the former leaves a single remaining integral over
y x x2 1≡ − :

( ) ( )

x y yI d V M

e e

( ) ((1 ) )

. (10)x y x y y xi
i

r

avg
2

src

1
2

1
2

·
F
2

∫∝ +

× ϕ ϕ− − + −⎡
⎣⎢

⎤
⎦⎥

This form is especially convenient for numerical simulations.
In Section 4.2.3, we will derive an even simpler approximate
representation, which eliminates the remaining integral.

Note that if the screen-phase term

{ }( ) ( )x y x yiexp 1

2

1

2
ϕ ϕ− − +⎡⎣ ⎤⎦ depended only on y, then

xI ( )avg would be the Fourier transform of the product of a
position-independent scattering kernel and the source visibility
(compare Equation (10) with Equation (9)); consequently, the
scattered image would be the convolution of the point-source
response with an image of the source. Perhaps unfortunately,
the screen-phase term depends on x so the scattering does
not act as a convolution for average images. However,
after an ensemble-average over the screen phases,

{ }x y x yi eexp ( ) ( ) yD1

2

1

2 ea

( )1
2ϕ ϕ− − + = − ϕ⎡⎣ ⎤⎦ , so that

we again recover the expected convolution action of scattering
in the ensemble-average regime.

4.2.1. Existence and Persistence of Refractive Substructure

The arguments of the preceding section raise the question:
why should refractive substructure exist at all? If the screen
phase, x( )ϕ , decorrelates over the scale of r0 at the screen, why
does each small region of scale r0 not produce an independent
variation from the average image, so that any larger-scale
structures are completely random in character? As we will now
demonstrate, although the phase decoheres over the scale r0,
the phase gradient remains correlated over much larger scales.
This long-range correlation accounts for the existence and
persistence of refractive substructure.

Specifically, note that the autocovariance of the directional
derivative of phase can be related to the second derivative of

the phase autocovariance:

[ ][ ]x x x x x x

xD

( ) ( ) ( ) ( )

( ).

(11)

x x x

x

0 0
2

0 0

2

ϕ ϕ ϕ ϕ∂ ∂ + = −∂ +

= ∂ ϕ

Thus, for a power-law index α, the phase-slope autocovariance
only falls as x (2 )∣ ∣ α− − (e.g., as x 1 3∣ ∣− for a Kolmogorov
spectrum). More precisely, note that the phase gradient causes
a shift of the image by xr ( )F

2 ϕ∼ ∇ (we will show this explicitly
in Section 4.2.3). Thus, the autocovariance of the fractional
image shift, relative to the refractive scale, of points offset by x
is x r( )0

(2 )∼ ∣ ∣ α− − . A large inner scale extends this correlation
length, while an outer scale introduces a sharp cutoff for the
correlation. The broad correlation of phase gradient leads to the
coherence of substructure on scales much larger than r0 and
allows it to persist over relatively long temporal averages
which, with the assumptions of a “frozen” phase screen, are
equivalent to partial spatial averages.

4.2.2. The Role of Source Structure

We now address another fundamental question: does an
extended source smooth the scattered image? To answer this,
note that the effect of an extended source in Equation (10) is to
restrict the range of y to small values. For a given location x on
the image, this restriction decreases the variations of

{ }( ) ( )x y x yiexp 1

2

1

2
ϕ ϕ− − +⎡⎣ ⎤⎦ , which are the source

of the refractive substructure (and the scatter broadening). This
phase difference quickly approaches 0 when the angular size of
the source exceeds the ensemble-average angular size of a
scattered point source, thereby quenching the refractive
substructure. However, because the image coordinate x
determines the center of the separation of contributing pairs
of screen points in Equation (10) that produce the refractive
substructure, the only role of source structure is to diminish the
effects of this phase difference at each x independently. Source
structure will reduce the screen-induced phase fluctuations but
will not spatially smooth them.

4.2.3. Approximating the Scattered Image

A limiting case provides considerable insight and a powerful
tool for simplifying numerical work. Specifically, suppose that
the screen phase fluctuations are smooth over the range of
coherence for the source field at the screen:

( )V M r(1 ) 1src in+ ≪ . Then, over the relevant range of

integration in Equation (10), x y x y( ) ( )1

2

1

2
ϕ ϕ+ − − ≈

y x· ( )ϕ∇ . With this approximation, Equation (10) becomes

( )
x y y

x x

I d V M e e

I r

( ) ((1 ) )

( ) . (12)

y x y xi
i

rss
2

src
· ( ) ·

src F
2

F
2∫

ϕ

≈ +

= + ∇

ϕ− ∇ −

In this case, refraction “shuffles” the image, moving each
image element to a place nearby: the scattered image brightness
at a location x is given by the brightness of the unscattered
source at x xr ( )F

2 ϕ+ ∇ , in accordance with the brightness
theorem of geometrical optics (Born & Wolf 1980). Since

r1 0ϕ∣∇ ∣ ∼ , the shuffling occurs over a region spanning the
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refractive scale, centered on x. Again, we emphasize that x is a
transverse coordinate at the scattering screen (not the source)
with a corresponding angular coordinate x D.

This approximation vividly illustrates the breakdown of the
convolution action of scattering in the average image, as
discussed above. Conversely, in the ensemble-average limit,
the averaged “shuffling” behavior leads to a smooth position-
independent blurring around each image coordinate to
reproduce the familiar convolution of point-source response
and image, now in the ensemble-average regime.

Because the approximation of Equation (12) eliminates the
remaining position-dependent integral, it enables rapid estima-
tion of the effects of scattering on any image after generating an
appropriate random phase screen. Figure 3 shows some
examples of scattered images that utilize this approximation.

4.3. The Imprint of Scattering Characteristics
on the Scattered Image

The discussion of Section 4.2 allows us to assess how the
scattered image is modified by properties of the scattering (see
Figure 3 for examples). For instance, in Section 4.2.1 we
showed that the large-scale coherent structures in the scattered
image are related to the long-range correlation of the phase
gradient x( )ϕ∇ across the image, which is proportional to the
second derivative of xD ( )ϕ .
Thus, if there is a finite outer scale, then the phase gradient

must decohere over displacements of rout∼ to avoid excessive
growth of the phase and divergence of the phase structure
function. This decoherence quickly destroys the coherent
features in the scattered image on scales larger than rout and
eliminates power on baselines too short to resolve the scale of

Figure 3. Simulated images showing the effects of scattering for two sources: a circular Gaussian distribution (top) and a ring (bottom). The leftmost panel in each
shows the unscattered source; the rightmost shows the ensemble-average scattered source. The three central panels show three different average images, each with a
Kolmogorov index in the inertial range. The second and third have a large inner scale (r r r200 0.16in 0 R= ≈ ) and a small outer scale (r r r500 0.41out 0 R= ≈ ),
respectively. Each image has r r35F 0= and M = 1 and was calculated using a scattering screen with 2 214 14× random phases, with the same random seed for both
source models. We used r r5in 0= in each case (except the large inner scale examples) so that the description and numerical reduction of described in Section 4.2.3 was
appropriate. The color scale is linear and extends to the brightest pixel in each image; the angular size of each image is identical. Observe that the greater extent of the
Gaussian than the ring results in a shallower signature of substructure in the average images but does not blur the substructure, in accord with the discussion of
Section 4.2.2. See Appendix C for additional details about the simulations.

Figure 4. Simulated images showing the effects of source size on a scattered image of a circular Gaussian source, as in Figure 3. Four cases are shown: the leftmost
has a source that has the same angular size as the ensemble-average scattered image of a point source, the next three are for identical scattering but an intrinsic source
that is two, four, and eight times larger. In each case, the scattering is Kolmogorov with a small inner scale and infinite outer scale, a Fresnel scale r r17.9F 0= , a
magnification M = 1, and a scattering screen with 2 214 14× random phases. The color scale is linear and extends to the brightest pixel in each image; the angular size
of each image is identical. Even when the scattering is highly subdominant to the intrinsic structure, the effects of scattering-induced substructure are still readily
apparent.
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the decoherence ( b rD

r

r

r 0
out

R

out
∣ ∣ ≲ ∼λ ). On the other hand, a large

inner scale increases the correlation length of the phase
gradient. This increase results in larger-scale coherent features
in the scattered image, or increased “patchiness.”

Similar considerations apply to the power-law index α.
Because larger values of 2α < have an increased correlation
length in the phase gradient (from Equation (11)), they
produce a higher level of refractive noise on short baselines but
a steeper fall in the noise with increasing baseline.

5. MANIFESTATIONS OF REFRACTIVE NOISE

We now discuss observable manifestations of the refractive
noise, how each is quenched by an extended source, and how
each reflects properties of the scattering. Our discussion relies
on expressions for the variance of the snapshot visibility that
are derived in Appendix B. We outline how to obtain exact
expressions numerically (using results in Appendix B.2) but
primarily focus on developing intuitive understanding, approx-
imations, and scaling relationships.

In Section 5.1, we discuss the most familiar refractive effect,
modulation of the total image flux. Next, in Section 5.2, we
derive the refractive contributions to image wander and
distortion. Finally, in Section 5.3, we derive expressions for
the visibility noise on long baselines, reflecting refractive
substructure in the scattered image. We summarize these results
in Section 5.4 and in Table 1.

5.1. Refractive Flux Modulation

The most familiar refractive manifestation, modulation of the
total flux, has been studied in depth by many authors (e.g.,
Shishov 1974; Rickett et al. 1984; Goodman & Narayan 1985).
Nevertheless, because the total flux is simply the visibility
measured by a zero-baseline interferometer, we can use our
formulation to estimate the flux modulation, providing a
valuable point-of-contact with previous work.

To derive an explicit estimation the flux modulation, we will
approximate the ensemble-average image by a Gaussian with a
characteristic scale rimg in the visibility domain: bV ( )ea ≡

( )e b r1
2 img

2− ∣ ∣ . The reciprocal of rimg is then proportional to the

FWHM of the scattered image, imgθ : 0.37 .
π r rimg

2 ln 2

img img
θ ∼ ≈λ λ

In turn, imgθ is approximately given by the quadrature sum of

the FWHM of the unscattered source, srcθ , and the FWHM of a
point source, scattθ .
With these substitutions, is it straightforward to

evaluate Equation (32) on the zero-baseline. The rms

flux variations are given by I( )2〈 Δ 〉 r rF
2

0
2∝ α α− − rimg

2 2 =α−

r r( )0 F
2 α− ( )scatt img

2 2
θ θ

α−
, in agreement with previous deriva-

tions (e.g., Narayan 1992).
From Equations (32) and (34), it is evident that an inner

scale only weakly affects the flux modulation until
r r r rin R 0 img≳ ; the inner scale must be comparable to the
transverse extent of the ensemble-average image to have a
significant effect. However, the imprint of a small outer scale is
much more severe—as the outer scale becomes much less than
rR, the rms flux modulation will be quenched as r r( )out R

(1 2)α− +

(see Equation (35)).

5.2. Refractive Image Wander and Distortion

Observations that are sensitive to the absolute image position
will see refractive image wander, and observations on short
baselines that begin to resolve the scattered image will see
large-scale image distortion. In general, these effects will be
correlated with each other and with the flux modulation
(Blandford & Narayan 1985; Romani et al. 1986). We will
now show that these effects are quite generally related to
refractive noise on short interferometric baselines, and we will
then use the results of Appendix B.2 to estimate their
magnitude.
Working in dimensionless baseline u b λ≡ for the visibility
uV ( ) and angular coordinates for the source image I ( )θ , the

Van Cittert–Zernicke theorem takes the form

uV d I e( ) ( ) . (13)uπi2 2 ·∫ θ θ= θ

For a short baseline—i.e., a baseline that does not resolve the
ensemble-average image, so that u 1 imgθ∣ ∣ ≪ —we can
approximate the visibility by expanding the exponential in

uπi2 · θ:

u u

u

V I πi I

π I

( ) ( ) 2 · ( )

2 ( · ) ( ) . (14)2 2

θ θ θ
θ θ

≈ +
−

Here, f d f( ) ( )2∫θ θ θ〈〈 〉〉 ≡ denotes an angular average.
Likewise, the visibility noise uV ( )Δ is related to the image
noise I ( )θΔ as

u

u

u

V I

πi I

π I

( ) ( )

2 · ( )

2 ( · ) ( ) . (15)

Flux Modulation

Image Wander

2 2

Image Distortion

  

  

  

θ

θ θ

θ θ

Δ ≈ Δ

+ Δ

− Δ

Thus, on short baselines, image wander will affect the visibility
phase while image distortion will affect the visibility

Table 1
Manifestations of Refractive Noise

Wavelength Depen-
dence (Point Source)

Metric Approximate rms
Fixed

Baseline
Fixed

Resolution

Fractional Flux
Modulation ( )r

r

2 2 2
0

F

scatt

img

α θ
θ

α− −
⎜ ⎟⎛
⎝

⎞
⎠

( )14
2λ− − −α
α

Image Wander
& Distortion ( )( )r

r

r

2 1 2

0

0

F

scatt

img

λ α θ
θ

α− −
⎜ ⎟⎛
⎝

⎞
⎠

2
2

2λ + −α
α

Refractive
Substructure ( ) ( )b

M r

r

r(1 )

2 2 2

0

0

F

scatt

img

α α θ
θ+

− −
⎜ ⎟⎛
⎝

⎞
⎠

( )4
2λ− −α
α 4λ− α
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amplitude. Noise in uV ( )∣ ∣ will be quadratic in baseline:

( )

u

u

u

V I

π u
I

I

I

I

( ) ( )

1 4 ˆ ·
( )

( )

ˆ · ( )

( )
. (16)

2 2

2 2
2

2

θ

θ θ
θ

θ θ

θ

∣Δ ∣ ≈ Δ

× + Δ
Δ

−
Δ

Δ

⎪

⎪

⎡

⎣
⎢⎢

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎪

⎭⎪

⎤

⎦

⎥⎥⎥

Note that the quadratic coefficient comes from the combined
effects of image wander and image distortion, which act in
opposition. The two effects could be decoupled by evaluating
the second moment of the snapshot visibility, Vss

2〈 〉, in addition
to the second moment of the snapshot visibility modulus (see
Appendix B.1), for instance. Figure 5 illustrates these changing
contributions to noise in the snapshot visibility as a function of
baseline length.

By expanding Equation (32) in baseline, we can now easily
estimate the relative strength of the position wander and
image distortion. Again adopting a circular Gaussian source
with characteristic scale rimg in the visibility domain
( r0.37img imgθ λ∼ ), we find that the quadratic coefficient has

a relative amplitude of r( )2

(2 ) img
2

2

λ≈ α
α

−
−

; this coefficient is
actually quite a steep function of α, ranging from 2.3 at α = 5/3
to 16.1 at 1.9α = . The aggregate rms position wander and
distortion (in radians), 2θ〈Δ 〉 , along one axis is then roughly

r π
I

r

r r

2

4 (2 )

. (17)

2

img

2

2
2

0

F

2
scatt

img

1 2

0

θ λ α
α

θ
θ

λ

Δ = −
−

Δ

∝
α α− −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

Note that, for a point source, this scaling matches the result of
(Cordes et al. 1986; our α is their α−2) and Romani et al.

(1986) (our α is their β−2). Interestingly, while most refractive
effects tend to weaken with increasing wavelength, absolute
image wander and distortion become stronger (see Table 1).
It is perhaps more natural to express 2θ〈Δ 〉 as a fraction of

the angular size of the ensemble-average image, r

D r
R img

scatt 0

img

scatt
∼θ

θ
λ θ

θ
.

Then, the rms fractional wander is ( )r

r

2 2 2
0

F

scatt

img
∝

α θ
θ

α− −
⎜ ⎟
⎛
⎝

⎞
⎠ —the

same scaling as the flux modulation. But most of the decrease
in fractional wander for an extended source comes from the
increasing size of the ensemble-average image. For instance,
for a Kolmogorov spectrum, the rms wander (in radians) is

only suppressed by
1 6

scatt

img

θ
θ

⎜ ⎟
⎛
⎝

⎞
⎠ relative to the wander of a point

source. Hence, refractive image wander may remain significant
even when the refractive flux modulation is heavily quenched.

5.3. Refractive Substructure in the Scattered Image

Finally, observations that can resolve the scattered image
will see substructure introduced by scattering. This substructure
contributes noise to long-baseline visibilities that is persistent
and wideband, in accord with the conditions derived in
Section 3.2. On a fixed baseline that is long enough to resolve
the ensemble-average image (i.e., b rimg∣ ∣ ≫ ), Equation (32)
shows that

( ) ( )

b
b

y y b y

b
b

V D
M

d V M

D
M

d I

( ) ˜
1

· (1 )

˜
1

( · ) ( ) .

(18)

a
2

ea

2
2 2

2
ea 2

2

2
ea

2

∫
∫ θ θ

Δ ∝
+

× +

∝
+

∇

ϕ

ϕ

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

This form highlights the major features of substructure on long
baselines: the rms noise falls with baseline as b 2∣ ∣ α− , the
fractional suppression of the noise due to an extended source is
independent of baseline length but may depend on the baseline
orientation, and the noise is proportional to the root mean

Figure 5. Fractional rms refractive noise (Equation (32)) as a function of baseline for four values of linearly incremented source size, beginning with a point source.
Left panel shows a linear scale, right shows logarithmic. The scattering parameters corresponding to these curves are r r100F 0= , M = 0, and α = 5/3; the sources are
circular Gaussians with unscattered sizes that are approximately 0, 0.5, 1, and 1.5 times the scattered size of a point source. On each curve, the heavy tick mark
indicates the baseline on which the ensemble average visibility falls to e1 0.61≈ ; for a point source, this baseline corresponds to M r(1 ) 0+ . In each case, this
location is near the peak of the refractive noise curve. The three noise regimes discussed in Section 5 are indicated: (1) zero-baseline noise reflects refractive flux
modulation; (2) short baselines see additional noise, increasing with the square of baseline until turning over at the noise peak, from the combined effects of image
wander and distortion; (3) long baselines resolve the ensemble-average image and are subject to noise from scattering-induced substructure within the average image.
An increasing source size affects the noise differently in these regimes: flux modulation falls as img

(2 2)θ α− − , fractional image wander and distortion also as img
(2 2)θ α− − , and

substructure as img
2θ − .
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squared gradient of the unscattered source brightness. The
refractive noise is then inversely proportional to the squared
size of the ensemble-average image. For the specific case of
source and scattering that are circularly-symmetric Gaussians,
the rms refractive noise for long-baseline visibilities is

( )( )bV ( ) br

r rss
2 2 2 2

0

F 0

scatt

img
Δ ∝

α α θ
θ

− −
⎜ ⎟
⎛
⎝

⎞
⎠ .

From Equation (32), we can also quickly understand how
the inner and outer scales will affect the long-baseline noise.
For instance, a finite outer scale will have little effect on the
refractive noise on baselines b M r r r(1 ) D

πF
2

out
1

2 out
1∣ ∣ ≳ + = =λ− −

M r r r(1 ) ( )0 R out+ . These baselines are long enough to resolve
the decoherence length, rout, set by the outer scale. Likewise, a
finite inner scale introduces a sharp cutoff in the noise for
baselines longer than M r(1 )

r

r R
0

in
+ . This cutoff arises because

the scattered image consists of many magnified and distorted
“subimages” of the unscattered source, with a characteristic
scale rin.

5 Thus, the visibility noise falls sharply on baselines
long enough to resolve the individual subimages.

A final important consideration is anisotropic scattering.
Consider an anisotropic Gaussian scattering disk with an axial
ratio A 1⩾ . By substituting Equation (36) into Equation (32),
we find that along the major axis of the scattering disk, the
refractive noise is enhanced by a factor of A relative to that for
a circular scattering disk with diameter equal to that of the
major axis; likewise, along the minor axis, the noise is reduced
by a factor 1/A relative to circular scattering with diameter
equal to that of the minor axis. (Johnson 2013). The asymptotic
ratio of the rms refractive noise along the major axis to the rms
noise along the minor axis is then A 2α .

5.4. Summary of Refractive Noise

To summarize, visibilities on different baselines are sensitive
to various manifestations of refractive noise. A zero-baseline
interferometer sees fluctuations that correspond to flux
modulation of the image. Short baselines, which do not resolve
the scattered image, see an additional contribution: the
aggregate of image wander and large-scale image distortion.
The rms noise peaks near baselines of length rimg where
V r e( ) 1ea img ≡ and then transitions to a power-law regime on
longer baselines, with the visibility noise rms falling with
baseline as bV 2∣Δ ∣ ∝ ∣ ∣ α− , reflecting compact substructure in
the scattered image. The length rimg also determines the
correlation length of the visibility noise in the observing plane:
vector baselines that differ by more than a distance of rimg will
see different realizations of the noise. See Table 1 for the
behavior of the noise in each of these regimes.

Because these manifestations of refractive noise are affected
differently by source structure, they provide a way of
decoupling the source structure from the scattering without
requiring multi-frequency measurements. For instance, Gwinn
et al. (2014) used the level of substructure for Sgr A* at

1.3 cmλ = on long baselines to constrain the pair of
parameters { , }srcα θ and found good agreement with values
that have been inferred by extrapolating scaling laws from
much longer wavelengths. Moreover, some refractive effects
may be much easier to detect than others. For instance,
refractive image wander is minimally affected by an extended
source whereas flux modulation falls quite steeply with

increasing source size. Furthermore, the effects of an inner
and outer scale depend strongly on baseline. Thus, a
comprehensive study of refractive effects can provide a robust
understanding of the source and scattering characteristics.

6. OBSERVATIONAL IMPLICATIONS

Our primary result is that small-scale refractive substructure
persists in the presence of an extended source, even on
baselines that would completely resolve the unscattered source.
Consequently, very long baseline interferometry (VLBI) might
detect structures smaller than any for the unscattered source,
even if scattering does not significantly blur the source. We
now give example calculations and specific implications for
two ongoing projects: RadioAstron and the EHT.

6.1. Implications for RadioAstron

RadioAstron is a 10 m radio dish in a highly eccentric
elliptical orbit around the Earth (Kardashev et al. 2013).
Launched in 2011 July and operating at wavelengths ranging
from 1.2 to 92 cm with earth-space baselines as long as
370,000 km, it provides unprecedented angular resolution at
these frequencies. A key science goal of RadioAstron is to
investigate the brightness temperatures of the most compact
active galactic nuclei (AGN) via direct imaging. Since bright-
ness temperature ( )Tb src

2λ θ∝ , the limiting brightness tem-
perature that a baseline can detect is proportional to its length
squared but not to its frequency (Kovalev et al. 2005). However,
the long-baseline coverage of RadioAstron is quite sparse
because the single orbiting antenna effectively provides only a
single earth-space baseline. Measurements on this baseline are
by far the most important contributor when inferring compact
structures, so it is essential to quantify potential refractive
substructure. We will now show that refractive noise can be
mistakenly identified as a signature of compact intrinsic
structure, leading to significant over-estimates of intrinsic
brightness temperature. In contrast, scatter-broadening will
always lead to an overestimation of the intrinsic size and, thus,
an underestimation of the intrinsic brightness temperature.
To derive a suitable point-of-reference, we consider a pure

Kolmogorov structure function. We suppose that scattering
material lies within the Milky Way, at a typical distance
D 1 kpc≈ , and that the source is at cosmological distance so
that M= 0. A typical long RadioAstron baseline has length
b 10 km5∼ . We take a typical source angular size to be

μ300 assrcθ ≈ at 6 cmλ = , μ1000 assrcθ ≈ at 18 cmλ = , and
μ5000 assrcθ ≈ at 92 cmλ = . These values are chosen to be

somewhat larger than the most compact sources that Radio-
Astron can resolve at each frequency; the resultant srcθ λ∝
scaling is also prototypical for self-absorbed jets (Blandford &
Königl 1979) and our chosen sizes are typical of compact AGN
(e.g., A.B. Pushkarev & Y.Y. Kovalev 2015, in preparation).
Figure 6 shows the estimated angular broadening using the
NE2001 model (Cordes & Lazio 2002); we take as typical
values μ30 asscattθ ≈ at 6 cmλ = , μ300 asscattθ ≈ at

18 cmλ = , and μ8000 asscattθ ≈ at 92 cmλ = , which are
approximately the median of the NE2001 angular broadening
and, thus, represent typical lines of sight away from the
Galactic plane. The size of the observed, scatter-broadened
image is img src

2
scatt
2θ θ θ≈ + .

Under these assumptions, the fractional rms visibility from
refractive noise, b bV( ) ( )ref ss

2σ ≡ 〈∣Δ ∣ 〉 , in the RadioAstron5 We thank Ramesh Narayan for identifying this correspondence.
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observing bands is approximately:6

b
b

b

μ μ

D

( ) 0.0038
6 cm 10 km

30 as 300 as 1 kpc

0.0071
18 cm 10 km

ref 5

5 6

scatt
5 6

img
2 1 6

5

5 6

σ λ

θ θ

λ

= ×

×

= ×

−

− −

−

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
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⎞
⎠⎟

⎛
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⎞
⎠⎟

⎛
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⎞
⎠⎟

⎛
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⎞
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⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
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b

μ μ

D

μ μ

D

300 as 1000 as 1 kpc

0.0055
92 cm 10 km

8000 as 10000 as 1 kpc
, (19)

scatt
5 6

img
2 1 6

5
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scatt
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2 1 6

θ θ

λ
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×
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×

− −

−
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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⎠⎟

where we have applied the relationship between r0 and scattθ for
M= 0:

π r r

2 ln 2
0.37 . (20)scatt

0 0
θ λ λ≈ ≈

Figure 6. Implications of refractive substructure for the RadioAstron mission; angular broadening (top) and refractive noise (middle, bottom) on a 100,000 km
baseline; all images utilize a Mollweide projection. (Top) Prediction of angular broadening at 1 GHzλ = for extragalactic objects according to the NE2001 model
(Cordes & Lazio 2002); the median angular broadening is 1 mas GHz

2λ∼ × − . (Middle) Refractive noise rms, relative to the zero-baseline flux, at 18 cmλ = on a
100,000 km baseline for a circular Gaussian source with FWHM of 1 massrcθ = . For comparison, the median angular broadening is μ300 asscattθ ≈ . (Bottom)
Refractive noise rms, relative to the zero-baseline flux, at 6 cmλ = on a 100,000 km baseline for a circular Gaussian source with FWHM of μ300 assrcθ = . For
comparison, the median angular broadening is μ30 asscattθ ≈ . In each case, the rms noise varies as ( )img

2
src
2

scatt
2 1θ θ θ≈ +− − .

6 At 1.2 cmλ = , the median angular broadening predicted by the NE2001
model is only μ1 as∼ , resulting in r r0 F∼ for a screen at D = 1 kpc. Thus, most
observations with RadioAstron at 1.2 cmλ = will be in a strong/weak
scattering transition regime and Equation (19) is not directly applicable.

10

The Astrophysical Journal, 805:180 (15pp), 2015 June 1 Johnson & Gwinn



A typical bright, compact source observed by RadioAstron
might have a flux density in its compact component of 1–10 Jy,
so we might expect substructure with strength 5–50 mJy.
Because baselines from RadioAstron to sensitive earth
antennas such as Arecibo have 4σ detection sensitivities

10 mJy≲ , substructure is quite plausibly detectable, even on
baselines that would completely resolve the unscattered
source.7 Figure 6 shows b( )refσ as a function of position on
the sky, using the NE2001 model (Cordes & Lazio 2002).

It is evident that long baseline detections by RadioAstron
must be interpreted with caution and compared with expected
levels of refractive noise. Refractive noise would be constant
over the refractive timescale of hours to weeks depending on
the observing frequency and line of sight, and would be
constant across the bandwidth of RadioAstron. It could be
correlated among vector baselines that differ by up to a few
times 10,000 km. Over many observing epochs, the visibility
amplitudes on a fixed baseline would be drawn from a Rayleigh
distribution; they would have a mean value of b( )π

2 refσ with
95% of samples drawn from the range b[0.16, 1.92] ( )refσ× .
To determine whether a measurement of srcθ is a secure
indication of compact intrinsic structure, one must use
Equation (19) together with best estimates of scattθ along the
particular line of sight, to see whether the measured long-
baseline visibilities can be reproduced from refractive noise
with a larger srcθ than is inferred in the absence of refractive
noise. Long-baseline measurements that are consistently lower
than the expected refractive noise could be used to infer
extended structure that quenches refractive noise.

6.2. Implications for the Event Horizon Telescope

The EHT is an ongoing international effort to establish a
global 1.3 and 0.87 mm VLBI network (Doeleman et al. 2009).
A key motivation for this development is to resolve the intrinsic
structure of the Galactic center supermassive black hole,
Sgr A*, which is significantly blurred by scattering at longer
wavelengths. Fish et al. (2014) has shown that remaining
blurring in the ensemble-average regime can be effectively

removed at λ = 1.3 mm. However, while angular broadening
decreases steeply with increasing frequency, the fractional
effect of refractive noise becomes stronger with increasing
frequency, so the influence of refractive substructure remains
an important consideration for the EHT. Moreover, because
Sgr A* only transitions to weak scattering (r r0 F= ) at 2 THz∼ ,
refractive substructure will affect all foreseeable VLBI
of Sgr A*.
Indeed, Gwinn et al. (2014) detected refractive substructure

in the scattered image of Sgr A* at λ = 1.3 cm, apparent as
persistent visibility on baselines that resolved the ensemble-
average scattered image. The most pronounced effects of
substructure will occur when the angular broadening is
comparable to the intrinsic structure (for Sgr A*, at
λ∼ 5 mm). Figure 7 shows the expected refractive noise for
Sgr A* at wavelengths and baselines appropriate for the EHT.
The noise is significantly affected by the intrinsic source
structure, which is currently only well-constrained in the east-
west direction (Doeleman et al. 2008; Fish et al. 2011). With
the assumption of a μ R40 as 4 Sch≈ circular Gaussian source,
the refractive noise at λ = 1.3 mm is ∼60 mJy for long east-
west baselines and is ∼25 mJy for long north-south baselines
(the difference is because of ∼2:1 anisotropy of the scattering).
Continued observations are essential to better characterize these
noise properties.
Note that while current EHT measurements on long

baselines are similar to the level of refractive noise expected
for a point source, they cannot be entirely the result of
refractive substructure because the ensemble-average visibility
would then be far higher than the measured values (i.e., the
intrinsic structure would need to be more compact than has
been inferred). The consistency of the EHT measurements over
observations in different years further argues against refractive
noise as a dominant contributor. Nevertheless, because the
estimates shown in Figure 7 anticipate refractive noise at
λ = 1.3 mm that is higher than expected thermal noise in EHT
measurements (see, e.g., Lu et al. 2014), refractive noise will
be an important consideration for the interpretation of forth-
coming EHT data, especially on baselines for which the
ensemble-average visibility is low. Although this noise would
remain constant over a single EHT observation and across the
bandwidth of the EHT, by combining different observations

Figure 7. Noise from refractive substructure expected for Sgr A* at λ = 1.3 mm (left) and at λ = 0.87 mm (right). For each wavelength, we show the expected noise
for both a point source and for a 40 μas (FWHM) circular Gaussian source. Estimates given in mJy assume a 2.4 Jy source in both cases. At the shorter wavelength,
λ = 0.87 mm, the refractive noise for a point source is stronger but is also more heavily quenched by the 40 μas source. Note that these estimates do not change
sharply with different scattering assumptions, such as a break to Kolmogorov scaling at λ ∼ 1 cm because the increase in refractive noise from somewhat weaker
scattering is partially offset by the concurrent increased quenching from source structure. However, these estimates demonstrate that the refractive noise does depend
sensitively on the intrinsic source structure at these wavelengths.

7 For estimates of the RadioAstron SEFD in each observing band, see the
RadioAstron User Handbook (www.asc.rssi.ru/radioastron/documents/rauh/en/
rauh.pdf) or Kovalev et al. (2014).
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one could reduce the noise and approach the ensemble-average
limit (Fish et al. 2014).

Refractive image distortion may also cause distortion of the
nearly circular photon ring that surrounds the “shadow” of the
black hole (Falcke et al. 2000), which may complicate tests of
general relativity based on potential asymmetry of the photon
ring (e.g., Johannsen & Psaltis 2010). While refractive
distortion would be stochastic and would not change the shape
of the shadow when averaged over many observing nights, it
may be an important consideration for single-epoch studies.
The supermassive black hole in M87, which subtends a similar
angular size but has negligible effects from scattering at EHT
wavelengths, will provide an important point of comparison.

Improved imaging strategies may help to mitigate the effects
of refractive noise. However, recall that the correlation length
of the noise introduced by substructure is approximately the
location at which the ensemble-average visibility falls to e1
(see Section 3.2). For a μ40 as circular Gaussian intrinsic
source, this length is approximately 2200 km at λ = 1.3 mm
and 1600 km at λ = 0.87 mm. Because the completed EHT will
have east-west baselines extending to ∼8000 km and north-
south baselines extending to ∼11,000 km (see, e.g., Figure 1 in
Fish et al. 2014), there may be many uncorrelated elements of
the noise in a single observation, complicating mitigation
strategies.

7. SUMMARY

Refractive scattering poses a complex observational chal-
lenge. It introduces effects that are long-lived and wideband,
and that can be difficult to unambiguously identify without
multi-epoch observations. We have explored the contributions
of a particular refractive effect: scattering-induced substructure
in images. Building upon the theory and methodology
developed by GN89, we have shown that small-scale
substructure persists in the presence of an extended source.
In particular, the action of scattering is not a convolution in the
average-image regime, which describes nearly all foreseeable
VLBI of extended sources. As a result, when the scatter-
broadening is comparable to or exceeds the intrinsic structure,
the signature consequence of refractive substructure—elevated
visibility on long baselines—can persist even on interfero-
metric baselines that are long enough to resolve the unscattered
source. These long-baseline visibilities are not an indication of
compact source structure. This result starkly contrasts with the
behavior of the diffraction pattern in the observing plane,
which is smoothed by an extended source by convolution.

Our results have immediate implications for VLBI studies of
galactic nuclei, including studies of AGN with RadioAstron
and of Sgr A* with the EHT. Refractive noise is an especially
important and subtle consideration for resolved images when
the scatter-broadening is comparable or somewhat subdomi-
nant to the intrinsic source structure. The refractive noise limits
direct imaging to a maximal resolution determined by the
scattering and can introduce spurious compact features into
images. Nevertheless, our results also indicate that these
instruments may provide valuable insight into the turbulent
ISM from the new perspective that refractive substructure
affords. For instance, substructure reflects properties of the
turbulence on much larger scales than those that produce the
angular broadening. Also, unlike refractive flux modulation,
refractive noise on long baselines does not need to be
disentangled from intrinsic source variability; it may, therefore,

be a more robust observable than flux modulation and an easier
measurement than position wander (which requires absolute
phase calibration) or image distortion (which requires precise
amplitude calibration). Refractive noise can also decouple the
intrinsic source structure from scatter broadening without
requiring assumptions about the frequency dependence of each
(e.g., Gwinn et al. 2014).
Ultimately, even refractive noise may not determine a

fundamental resolution limit for VLBI. Famously, scattering
processes do not destroy information, but rather they add
information until the original information is obscured. For
instance, in the diffractive regime one can utilize the scattering
to improve the resolution of an instrument by employing the
scattering material as an enormous interstellar lens (Cohen
et al. 1967; Salpeter 1967; Lovelace 1970; Backer 1975;
Cordes et al. 1983; Narayan 1992; Cornwell & Narayan 1993;
Gwinn et al. 1998). Future work based on simplified models for
the scattering may suggest superior mitigation and analysis
strategies in the refractive regime as well.

We gratefully acknowledge helpful conversations with
Ramesh Narayan, Vincent Fish, and Yuri Kovalev. We thank
the referee for identifying the connection with geometrical
optics. We thank the U.S. National Science Foundation (AST-
1008865); M.J. thanks the Gordon and Betty Moore Founda-
tion (#GBMF-3561) for financial support for this work.

APPENDIX A
THE PHASE STRUCTURE FUNCTION

To encompass the phase structure function in a simple
functional form, we use the following expression (GN89;
Equation (3.1.1)):

( )r
r r

r
D

C r r r

Cr r
( )

, if

if .
(21)

2
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2 2

in out

out out

≈
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⎧
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⎤
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In this expression,C 2ν∝ − , reflecting the behavior of the index
of refraction for frequencies much greater than the plasma
frequency (kHz in the ISM). Thus, for a pure power-law, the
phase coherence length (D r( ) 10 ≡ϕ ) satisfies r0

2ν∝ α. For a
negligible inner scale, r rin 0≪ , we have
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While the power-law form at large r is equivalent in the two
cases, the correspondence between the C and r0 is affected by
an inner scale. This change is what causes the minor
modifications to refractive noise on baselines shorter than

r
r

r R
0

in
∼ from an inner scale.
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Finally, we account for anisotropic scattering for a pure
power law using the form

D x y
x

r

y

r
({ , }) . (24)

x y

2

0,
2

2

0,
2

2

= +ϕ

α⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

APPENDIX B
DETAILED CALCULATION OF REFRACTIVE NOISE

We now calculate the variance of the refractive noise (i.e.,
the noise V V V V Va a a ea a eaΔ ≡ −〈 〉 = − in the average visibility).
This variance is used in Section 5 to quantify various
manifestations of refractive noise. Our treatment closely
follows GN89, although we do not restrict ourselves to long
baselines or isotropic scattering, and we include effects from an
extended source.

We first, in Section B.1, derive a general expression for the
second moment of the snapshot visibility. Then, in Section B.2,
we isolate the contribution of refraction noise and obtain a
simplified expression for it in the strong-scattering regime.

B.1 The Second Moment of Vss∣ ∣
To calculate the variance of the snapshot visibility modulus,

we must multiply the expression for the snapshot visibility
(Equation (3)) by its conjugate before evaluating the ensemble
average over the screen phases. The ensemble-average over
screen phases only affects one term in the resulting integral,
which we can readily reduce, as for the ensemble-average
visibility (Section 3.3):

[ ]e
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where x x xij i jΔ ≡ − . The second equality follows from
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Using a Hadamard transform, we then change variables to
exploit this pairwise representation:
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Finally, we can apply the identity x x x x1
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Because the xijΔ can be written using only y{ }2,3,4 , we can
integrate Equation (28) over y1 to replace the exponential in y1

by ( ) yπr2 ( )F
2 2

4δ . We then integrate over y4 to leave
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Note that the phase structure function is still completely
general, as is the intrinsic source structure. Moreover, we have
not yet made any approximations based on the strength of the
phase fluctuations.

B.2 Refractive Noise

Three effects contribute to a snapshot visibility: diffractive
noise, refractive noise, and V b( )ea . However, for the second
moment, as expressed in Equation (29), each arises from a
different region of the integral. In the strong scattering regime
with 2α < , the dominant contributions to the integral have at
least one of y y r{ , }2 3 0∣ ∣ ∣ ∣ ≲ . The region y yr r{ , }2 0 3 0∣ ∣ ≫ ∣ ∣ ≲
gives the diffractive noise, as is evident by its suppression from
an extended source. The remaining region of the integral gives
the second moment of Va∣ ∣. Figure 8 illustrates this geometry.
To isolate the noise VaΔ , note that the contribution of Vea can

be written as
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Because they focused on long baseline properties, GN89
neglected the phase variations e y yir ·F

2
2 3

−
in Equation (29), which

are then small over the region that dominates the refractive
contribution, giving an bM r((1 ) )0

2 + correction. With this
approximation, and in the strong scattering regime, the
integrals in Equation (30) factorize (Johnson 2013), simplify-
ing the remaining calculation. However, we must retain the
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coupling term in order to understand the refractive noise on all
baselines.

The integral over y3 is the one that is challenging
numerically, but we can get it into a manageable form. Because

y yD D( ) ( )= −ϕ ϕ and y y3 2∣ ∣ ≫ ∣ ∣ for the average visibility, we
have that
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Importantly, this representation does not assume that yD ( )ϕ is
isotropic.

Combining Equations (29)–(31) then gives
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where we have introduced
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Once yD̃ ( )ϕ is specified (analytically), the integral in
Equation (32) can easily be performed numerically.
Note that yD̃ ( )3ϕ is closely related to the power spectrum of

phase fluctuations at a scale q y r3 F
2≡ (see, e.g., Tatarskii

1971; Goodman & Narayan 1985; Coles et al. 1987; Lambert
& Rickett 2000). Specifically, after removing a constant phase
offset, which does not affect the snapshot visibilities,

( )y q yD Q r˜ ( ) .3 3 F
2∝ − ≡ϕ Hence, positivity of the power

spectrum enforces positivity of the refractive noise. For
instance, consider an isotropic power-law structure function:
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We can easily generalize this result to include inner and outer
scales in xD ( )ϕ or anisotropy. For instance,
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Similarly, to account for anisotropic scattering, we use the form
for D x y({ , })ϕ given in Equation (24). Then
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APPENDIX C
SCATTERING SIMULATIONS

In this section, we provide additional details about the
scattering simulations shown in Figure 3. Similar simulations
have been performed in many contexts (e.g., Coles
et al. 1995, 2010; Habibi et al. 2013), but ours are perhaps
most similar to the one-dimensional simulations of NG89, with
the primary difference that we are simulating a two-
dimensional scattering screen.
We first generate an N × N grid of independent zero-mean,

complex Gaussian random variables. Next, we imprint the
appropriate power spectrum Q of phase fluctuations by taking
the discrete Fourier transform of the phases, multiplying by

qQ ( ) , and then inverse Fourier transforming the result.
Finally, we calculate the empirical structure function and apply
an overall normalization to the phases so that D r( ) 10 =ϕ .
For the power spectrum, we employ the commonly used

form

( )q qQ q e( ) , (37)
q

q2
min
2 (1 2)

max

2

∝ +
α− + −

⎛
⎝⎜

⎞
⎠⎟

which corresponds to a phase structure function with an index
α, inner scale r q1in max∼ , and outer scale r q1out min∼ . Note
that specific conventions for the form of Equation (37) and the

Figure 8. Refractive and diffractive contributions to the second moment of the
snapshot visibility.
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relationship between rin out and qmax min vary throughout the
literature.

After calculating the screen phases, we can evaluate the
electric field in the observing plane (Equation (1)), snapshot
visibilities (Equation (3)), or the scattered image (Equa-
tion (10)). For the scattered images shown in Figure 3, we
calculated the phase gradient at each location using a discrete
approximation with nearest-neighbor grid points and then
utilized the approximation of Equation (12).

The greatest computational hurdle is then storing the random
phase screen in memory; the number of screen phases that must
be stored is r r r r( ) ( )R 0

2
F 0

4∼ = . To achieve the largest ratios
r r 1F 0 ≫ , appropriate for strong scattering, we set r0 to be
equal to the grid spacing. Our simulations have a linear size of
214 points, so we can readily achieve r r 35F 0 ∼ . However,
because the phase varies linearly on scales shorter than rin, one
only needs to resolve the larger of r r{ , }0 in . Hence, simulations
could be performed with a much larger r rF 0 if they also
included a large inner scale.
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