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We present an approach to testing the gravitational redshift effect using the RadioAstron satellite. 
The experiment is based on a modification of the Gravity Probe A scheme of nonrelativistic Doppler 
compensation and benefits from the highly eccentric orbit and ultra-stable atomic hydrogen maser 
frequency standard of the RadioAstron satellite. Using the presented techniques we expect to reach an 
accuracy of the gravitational redshift test of order 10−5, a magnitude better than that of Gravity Probe 
A. Data processing is ongoing, our preliminary results agree with the validity of the Einstein Equivalence 
Principle.
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1. Introduction

Quantum theory and general relativity are the two pillars of 
modern physics. However, they are incompatible. Attempts to 
quantize gravitation in the frameworks of string theory or loop 
quantum gravity inevitably lead to a violation of the Einstein 
Equivalence Principle (EEP) and thus to a breakdown of the metric 
nature of gravitation [1]. Although there exist attempts to preserve 
the unquantized status of gravitation, they have not created a com-
pelling case so far [2]. Tests of the EEP are therefore of primary 
interest to characterize any unified theory of interactions.

Much progress in the field of EEP tests was made with direct in-
volvement and under the leadership of V. B. Braginsky, the founder 
of a gravitational physics school (see, e.g. [3–5]). With many coau-
thors of this paper proudly regarding Vladimir Borisovich as a 
teacher, we would like to dedicate this work to his memory.

In this paper we present an approach to probing the gravita-
tional redshift effect, which constitutes a test of the Local Position 
Invariance aspect of the EEP, using the RadioAstron satellite [6]. 
A highly eccentric orbit and an ultra-stable on-board atomic hy-
drogen maser clock make RadioAstron a unique laboratory for such 
test. The idea of experiments of this kind is to compare the rate of 
time flow at different space-time points against the gravitational 
potential difference between them. In the simplest case when time 
is measured by identical clocks and the gravitational field is weak, 
the basic equation reads [1]:

�T

T
= (1 + ε)

�U

c2
, (1)

where �T /T is the fractional difference of time intervals measured 
by the clocks, �U is the gravitational potential difference between 
them, c is the speed of light, and ε is the violation parameter to be 
determined. In unified theories ε is usually non-zero and depends 
on the clock type and element composition of the gravitational 
field source, while in general relativity and any other metric theory 
of gravitation ε = 0.

The concept of a satellite-based gravitational redshift experi-
ment was developed and realized by Vessot et al. in the suborbital 
Gravity Probe A (GP-A) mission [7], which yielded the best such 
test to date: it found ε = (0.05 ± 1.4) × 10−4 (for hydrogen maser 
clocks), with δε = 1.4 × 10−4 constituting the accuracy of the test 
(1σ ). A modified approach we have developed for RadioAstron 
allows us, in principle, to reach an accuracy of δε ∼ 10−6, ben-
efitting from a better performing hydrogen maser (H-maser) and 
prolonged data accumulation [8]. However, technical and opera-
tional constraints discussed below limit the achievable accuracy to 
δε ∼ 10−5. Several competing experiments are currently at various 
stages of preparation or realization, with accuracy goals ranging 
from 4 × 10−5 to 2 × 10−6 [9–11].

The RadioAstron project is an international collaborative mis-
sion centered around the 10-m space radio telescope, with the pri-
mary goal of performing Space VLBI (Very-Long-Baseline Interfer-
ometry) observations of celestial radio sources of different nature 
with an extraordinary high angular resolution [6]. The RadioAstron 
spacecraft is on a highly eccentric orbit around the Earth, evolving 
due to the gravitational influence of the Moon, as well as other fac-
tors, within a broad range of the orbital parameter space (perigee 
altitude 1,000–80,000 km, apogee altitude 270,000–370,000 km). 
The gravitational redshift experiment is a part of the RadioAstron 
mission’s Key Science Programme. The essential characteristic of 
the mission, making it suitable for the experiment, is the presence 
of the space-qualified H-maser VCH-1010 aboard the spacecraft 
[12].

The outline of the paper is as follows. In Section 2 we present 
our approach to testing the gravitational redshift effect with Ra-
dioAstron, emphasizing similarities and differences between our 
Fig. 1. Comparison of the frequency stability of the RadioAstron VCH-1010 [12] and 
GP-A VLG-10 [13] H-masers in terms of the Allan deviation.

Doppler compensation scheme and that of Gravity Probe A. In 
Section 3 we briefly discuss our data processing algorithms and 
describe how we treat small effects that are not cancelled by the 
Doppler compensation scheme. In Section 4 we give details of 
the measurements performed so far. We conclude with Section 5
by discussing the preliminary results and prospects for future re-
search.

2. Outline of the RadioAstron gravitational redshift experiment

There exist two approaches to testing the gravitational redshift 
effect in the field of the Earth. The first one is based on measur-
ing the total value of the gravitational redshift between a ground 
station and a satellite. This approach, to be pursued by the ACES 
mission [10] and often called the absolute gravitational redshift 
measurement, is feasible only with accurate clocks. The second ap-
proach, pioneered by Gravity Probe A, requires a stable clock, such 
as an H-maser, and is based on measuring the modulation of the 
redshift effect caused by the spacecraft’s motion along an eccentric 
orbit around the Earth. We follow the second approach, benefiting 
from the high stability of RadioAstron’s H-maser (Fig. 1) and the 
deep modulation of the redshift effect due to the high eccentric-
ity of the orbit (Fig. 2). The modulation approach has an important 
advantage over the absolute measurement—it eliminates most sys-
tematic errors and provides for statistical averaging of the results. 
The ultimate goal of the experiment, in either case, is to determine 
the EEP violation parameter ε by comparing the experimentally 
measured redshift, �Tgrav or � fgrav, against the computed gravi-
tational potential difference, �U , between the ground and space-
borne clocks using Eq. (1) or (2) (below).

In the gravitational redshift experiment with RadioAstron we 
detect the frequency change of RadioAstron’s on-board H-maser 
due to gravitation by comparing it, with the help of radio links, 
with an H-maser at a ground station. The fractional frequency shift 
due to gravitation, � fgrav/ f , of a signal at frequency f sent from 
the spacecraft to a ground station, is:

� fgrav

f
= (1 + ε)

�U

c2
, (2)

which reflects the same physics as Eq. (1). Either one of RadioAs-
tron mission’s dedicated tracking stations (TS), Pushchino (Moscow 
region, Russia) or Green Bank (West Virginia, USA), or a regu-
lar ground radio telescope (GRT) equipped with a 8.4 or 15 GHz 
receiver may be used to receive the spacecraft signal. The small 
gravitational frequency shift, with a maximum value of � fgrav/ f ∼
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Fig. 2. Variation of the gravitational frequency shift of the 8.4 GHz downlink signal 
along the orbit during a low perigee epoch.

7 × 10−10 at the apogee, needs to be extracted from a number of 
other effects influencing the signal sent from the spacecraft to the 
ground station [14]:

� f1w =
= f

(
− Ḋ

c
− v2

s − v2
e

2c2
+ (vs · n)2 − (ve · n) · (vs · n)

c2

)

+ � fgrav + � f ion + � ftrop + � ffine + � f0 + O
( v

c

)3
, (3)

where vs and ve are the velocities of the spacecraft and the ground 
station (in a geocentric inertial reference frame), Ḋ is the radial 
velocity of the spacecraft relative to the ground station, n is a 
unit vector in the direction opposite to that of signal propaga-
tion, � f ion and � ftrop are the ionospheric and tropospheric shifts, 
� ffine denotes various fine effects (phase center motion, instru-
mental, etc.), � f0 is the frequency bias between the ground and 
space H-masers, and “1w” stands for “1-way” (space to ground).

There are two major problems in using Eq. (3) to determine 
� fgrav directly, at least for RadioAstron. First, the frequency bias, 
� f0, cannot be determined after launch without making use of 
Eq. (2), which requires the knowledge of ε. We do not expect � f0
to be negligible for H-maser standards and, moreover, the well-
known cavity “pulling” effect may cause it to drift over long times. 
We solve the bias problem by measuring only the modulation of 
the gravitational effect, � fgrav, instead of its total value. In prac-
tice, this means having two or several observational sessions at 
greatly varying distances to the spacecraft. Although the measured 
value of the modulation of � fgrav is then free from the bulk of 
the bias, it still includes a contribution from the bias drift. The lat-
ter, however, may be determined from a series of observations at a 
constant geocentric distance. The drift measured this way (Fig. 3), 
indeed, turns out to be non-negligible (3.6 × 10−14/day now), so 
that we must take it into account.

The second problem with Eq. (3) is associated with the non-
relativistic Doppler shift, −Ḋ/c. Since the range rate error δ Ḋ is 
∼ 2 mm/s [15], the error of the computed value of the Doppler 
shift is δ(Ḋ/c) ∼ 10−11, while 10−15 is required for achieving 
δε ∼ 10−5. The first-order Doppler term, however, can be elimi-
nated completely (for a TS), or its magnitude reduced sufficiently 
(for a GRT), owing to the availability of the 2-way ground–space–
ground link (Fig. 4). The 2-way link signal is sent by a TS, received 
and phase-coherently retransmitted by the spacecraft, and finally 
received again by a TS and/or a GRT. The frequency shift of the 
2-way link signal, for the simpler case of TS–space–TS propaga-
tion, is:

� f2w = f

(
− 2

Ḋ − v2
s − v2

e
2

+ |vs − ve|2
2

− 2
ae · n

�t

c c c c
Fig. 3. Frequency drift of the RadioAstron on-board H-maser relative to the H-maser 
at the Green Bank TS.

+ 2
(vs · n)2 − (ve · n) · (vs · n)

c2

)

+ 2� ftrop + 2� f ion + O (v/c)3, (4)

where ae is the ground station acceleration and �t is the signal’s 
light travel time [14]. (A physically similar but calculationally more 
complex equation holds for the case of the 2-way link signal re-
ceived by a nearby GRT.) Combining the 1-way (3) and 2-way (4)
frequency measurements, we obtain:

� f1w − � f2w

2
= � fgrav + f

(
−|vs − ve|2

2c2
+ ae · n

c
�t

)

+ � f0 + � f (res)
ion + � ffine + O (v/c)4, (5)

where � f (res)
ion is the residual ionospheric shift (fully suppressed 

only for equal up- and downlink frequencies) and � ffine denotes 
several “fine” effects, such as those due to the relativistic kinematic 
terms of order (v/c)3:

� f (3)

f
= n · (ve − vs)

c3

(
�U − |vs − ve|2

2
+ (ae · n) c�t

)

+ D

c3

( − vs · ae − (je · n) c�t + 2ve · ae + ve · ∇Ue
)
, (6)

where je = ȧe is the ground station jerk and ∇Ue is the gradient of 
the gravitational potential at the ground station location (see Sec-
tion 3 for other fine effects). It is important to note that Eq. (5)
is free from the nonrelativistic Doppler and tropospheric effects 
but retains the contribution of gravitation. The idea of the com-
pensation scheme based on Eq. (5) was first realized in the GP-A 
mission, and the necessity of taking into account third-order kine-
matic effects was noted in [16,17]. For RadioAstron, however, this 
scheme is not directly applicable because 1- and 2-way links can-
not be operated simultaneously (Fig. 4). Nevertheless, two options 
for realizing the compensation scheme of Eq. (5) with RadioAstron 
have been devised.

The first option requires interleaving the 1-way “H-maser” 
(Fig. 4a) and 2-way “Coherent” (Fig. 4b) operation modes. The data 
recorded by GRTs (and the TS) contain only one kind of signal at 
any given time. However, if the switching cycle is short enough 
(∼4 min at 8.4 GHz) we can interpolate the phases into the gaps 
with a corresponding frequency error of � f / f ∼ 4 × 10−15. Thus 
we obtain simultaneous frequency measurements of both kinds 
and can apply the compensation scheme of Eq. (5) to them di-
rectly. The approach based on interleaved measurements does not 
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Fig. 4. Operation modes of the RadioAstron radio links: a) “H-Maser” (1-way); b) “Coherent” (2-way); c) “Semi-Coherent” (2-way).
rely on any features of the signal spectrum and may be realized 
with telescopes equipped either with 8.4 or 15 GHz receivers.

The second option for the Doppler compensation involves 
recording the 15 GHz data downlink signal in the “Semi-Coherent” 
mode of synchronization of the on-board scientific and radio 
equipment [8], which is a kind of half-way between the 1-way 
“H-maser” and 2-way “Coherent” modes. In this mode the 7.2 GHz 
uplink tone, the 8.4 GHz downlink tone and the carrier of the 
15 GHz data downlink are phase-locked to the ground H-maser 
signal, while the modulation frequency (72 MHz) of the data 
downlink is phase-locked to the on-board H-maser signal (Fig. 4c). 
This approach relies on the broadband (∼1 GHz) nature of the 15 
GHz signal modulated using quadrature phase-shift keying (QPSK) 
and the possibility of turning its spectrum into a comb-like form 
by transmitting a predefined periodic data sequence (Fig. 5). As we 
have shown in [8], different subtones of the resulting spectrum act 
like separate links of the GP-A scheme and can be arranged in soft-
ware postprocessing into a combination similar to that of Eq. (5), 
which is free from the 1st-order Doppler and tropospheric effects 
(the ionospheric term persists).

Despite some advantages of the second option from algorithmic 
and operational points of view, we give preference to the inter-
leaved measurements approach as it provides for a larger number 
of participating GRTs due to the larger ground footprint of the 
on-board antenna at 8.4 GHz and wider availability of 8.4 GHz re-
ceivers at GRTs.

3. Data processing and fine effects

The primary data for the experiment are the spacecraft signals 
at 8.4 and/or 15 GHz received and recorded at a ground station. 
The majority of radio astronomy and geodetic radio telescopes are 
equipped with H-maser standards and 8.4 GHz receivers, enabling 
them to take part in the experiment. Recording of the space-
craft signal is performed in the ground H-maser timescale using 
standard VLBI back-end instrumentation. Initial data processing is 
based on the algorithms developed originally for PRIDE (Planetary 
Radio Interferometry and Doppler Experiment) [18] for recover-
ing the phase of the received signal. Details of the algorithm and 
software modifications required to process interleaved data will 
be given in an upcoming publication [19]. Here we briefly de-
scribe the approaches for correcting the recovered signal phases 
for a number of fine effects contributing to the right-hand side of 
Eq. (5):

• second- and third-order relativistic kinematic effects: com-
puted from the orbital data (velocity determination accuracy 
of δv ∼ 2 mm/s [15] is sufficient);

• gravitational potential difference between the spacecraft and 
the ground station: computed from the orbital data using the 
Earth gravitational potential model [20] (the position error of 
∼ 200 m provided by radio ranging [15] is sufficient for dis-
tances � 40,000 km, laser ranging required otherwise);

• residual ionospheric frequency shift: computed from
2-frequency measurements (8.4 and 15 GHz), ionospheric total 
electron content (TEC) maps [21] and mapping functions [22], 
onsite GNSS receiver measurements;

• frequency shift due to the tidal gravitational field of the 
Sun and Moon [17]: computed from the planetary and lunar 
ephemerides (JPL DE430);

• phase center motion of the on-board and tracking station an-
tennas: computed from the orbital and housekeeping data 
[23];

• temperature dependence of the on-board H-maser: computed 
from the H-maser sensitivity determined during ground tests 
and housekeeping data;

• magnetic field dependence of the on-board H-maser fre-
quency: computed from the H-maser sensitivity determined 
during ground tests, the magnetic field model [24] and the 
orbital data;

• ground station motion due to solid Earth tides: computed from 
Earth models [25].

After the gravitational frequency shift has been measured ex-
perimentally in a series of observations at various distances on a 
single orbit, we fit it against the gravitational potential difference 
according to Eq. (2), thus obtaining a single measurement of ε. The 
accuracy of the result of 2–3 years of planned data accumulation 
depends on the number of experiments performed and their pa-
rameters. Based on the experiment error budget [26] and taking 
into account the observations performed so far and those planned 
we expect the accuracy of the test to reach δε ∼ 10−5.
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Fig. 5. Spectrum analyzer screenshot, showing the signal spectrum of the 15 GHz data downlink in the “Test-2” mode of the on-board formatter.

Fig. 6. Residual frequencies of the 1- and 2-way 8.4 GHz signals measured with the Onsala 20-m telescope. The 1-way frequency residuals are not corrected for the 
gravitational redshift. This makes the variation of the gravitational frequency shift between the two sessions clearly visible (varying from 5.69 Hz to 4.96 Hz).
4. Measurements

The observations for the experiment are limited both by the 
technical constraints of the RadioAstron satellite and competition 
for observational time with other science projects of the RadioAs-
tron mission. The technical constraints are:

• the spacecraft’s attitude limitations with respect to the Earth, 
Sun and Moon;

• the requirement that the spacecraft must be visible by the par-
ticular ground antenna;

• the requirement that the ground antenna must be within the 
on-board antenna’s ground footprint.

A total of 18 experiments have been performed so far with the 
RadioAstron mission’s Pushchino and Green Bank tracking stations 
supported by several European VLBI Network telescopes (Effels-
berg, Onsala, Svetloe, Wettzell, Yebes, Zelenchukskaya), the Robert 
C. Byrd Green Bank Telescope, and several Very Long Baseline Ar-
ray antennas. Extensive tests have been performed with the ra-
dio telescopes and satellite laser ranging facilities of the Harte-
beesthoek Radio Astronomy Observatory and AuScope VLBI Pro-
ject’s Yarragadee Observatory, which are to join the observations. 
All experiments were performed in the interleaved measurements 
mode (Fig. 6) and consisted of up to 4 observations, each ∼ 1 hr 
long, distributed along the orbit over ∼ 20–50 hr. Most observa-
tions were accompanied by satellite laser ranging to guarantee an 
orbit determination accuracy at the cm-level [27]. The evaluation 
of our preliminary experimental results, which are consistent with 
ε = 0, will be published elsewhere.

5. Conclusions

The RadioAstron satellite, with its highly eccentric orbit and on-
board H-maser frequency standard, is a unique space-borne labora-
tory for probing the gravitational redshift effect, which constitutes 
a Local Position Invariance test of the Einstein Equivalence Prin-
ciple. We have developed, and are implementing, a strategy for 
using the RadioAstron satellite to measure the gravitational red-
shift which takes into account the limitations of the spacecraft. We 
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should be able to measure the redshift to an accuracy of ∼ 10−5, 
which is an order of magnitude better than the current best re-
sult of Gravity Probe A. Several measurements have already been 
obtained, and the data are being analyzed. Our preliminary re-
sults agree with the validity of the EEP. Some of the techniques 
we have developed, e.g. the particular realization of the Doppler 
compensation scheme, could be used for future space missions to 
test fundamental physics.
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